

Welcome to Postgres Query Analyser’s documentation!

Contents:

	pg_query_analyser – PostgreSQL Slow Query Log parser
	Overview

	Example output

	Requirements

	Install

	Usage

	Help

	fabfile Module

Indices and tables

	Index

	Module Index

	Search Page

pg_query_analyser – PostgreSQL Slow Query Log parser

Overview

pg_query_analyser is a C++ clone of the PgFouine log analyser.

Processing logs with millions of lines only takes a few minutes with this
parser while PgFouine chokes long before that.

Example output

The normal overview:

[image: http://wolph.github.com/pg_query_analyser/images/screenshot.png]
The overview with the examples expanded:

[image: http://wolph.github.com/pg_query_analyser/images/screenshot1.png]

Requirements

Ubuntu (tested with 13.10):

apt-get install qt4-dev-tools

Ubuntu (tested with 16.04.2 LTS)

apt-get install qt4-dev-tools qt4-qmake libqt4-dev

Install

qmake
make
make test
sudo make install

Usage

Set Postgres to use this log_line_prefix:

log_line_prefix = '%t [%p]: [%l-1] host=%h,user=%u,db=%d,tx=%x,vtx=%v '

After that we can start parsing data.

From stdin:

cat /var/log/postgresql/postgresql.log | head -n 100000 | ./pg_query_analyser -i -

From file:

./pg_query_analyser --input-file=/var/log/postgresql/postgresql.log

For a full build+analyze on Ubuntu:

cd examples
fab -H <remote-ubuntu-postgres-server> build log_and_analyse

Help

./pg_query_analyser -h
Usage: ./pg_query_analyser [flags]
Options:
 -h, --help=[false]
 -u, --users=[]
 -v, --verbose=[false]
 -i, --input-file=[/var/log/postgresql/postgresql-9.1-main.log]
 -d, --databases=[]
 -t, --query-types=[SELECT,UPDATE,INSERT,DELETE]
 -o, --output-file=[report.html]
 --top=[20]

fabfile Module

	
fabfile.get_env()

	Get the env with all variables parsed using Python string formatting

Example:

>>> from fabric import api
>>> api.env.foo = 'The value of Foo!'
>>> api.env.bar = 'The value of Bar and foo: %(foo)s'
>>> get_env().bar
'The value of Bar and foo: The value of Foo!'

The parser does ENV_PARSE_PASSES over the variables so nested variables
are supported.

It is also possible to add host-specific configuration overrides using
the ENV_OVERRIDES. Something like this will give you host specific
support:

>>> from fabric import api
>>> ENV_OVERRIDES['host'] = {'my_special_host': {'foo': 'Special Foo!'}}
>>> api.env.foo = 'The value of Foo!'
>>> api.env.bar = 'The value of Bar and foo: %(foo)s'
>>> api.env.host = 'my_special_host'
>>> get_env().bar
'The value of Bar and foo: Special Foo!'

	
fabfile.wrap_environments()

	Wrap the command with these environment files

By using this context you can add overrides for specific hosts in external
files or just add global defaults.

To use the general overrides simply add your settings to one of the files
in ENVIRONMENT_FILES and/or add extra files to that file.
To use the host-specific configuration files the settings must be in one
of the files mentioned in AVAILABLE_ENVIRONMENT_FILES.

	
fabfile.enable_logging()

	Enables logging on the Postgres server

	Copy [http://docs.fabfile.org/en/latest/api/core/operations.html#fabric.operations.put] pg_query_analyser_log.conf to the
remote server

	Add `include pg_query_analyser_log.conf ` to the main postgres config file

	Reload postgres

Including the config file is done by
appending [http://docs.fabfile.org/en/latest/api/contrib/files.html#fabric.contrib.files.append] the include line to
the main Postgres config or by uncommenting the
line if already exists.

	
fabfile.comment(file, line)

	Comment the given line in the given file using perl

This essentially does the same as the fabric
comment [http://docs.fabfile.org/en/latest/api/contrib/files.html#fabric.contrib.files.comment] method
but because of weird escaping issues I couldn’t get that one to work.

	
fabfile.uncomment(file, line)

	Uncomment the given line in the given file using perl

This essentially does the same as the fabric
uncomment [http://docs.fabfile.org/en/latest/api/contrib/files.html#fabric.contrib.files.uncomment] method
but because of weird escaping issues I couldn’t get that one to work.

	
fabfile.disable_logging()

	Disable logging on the Postgres server

	Comment the include for the config file from the
enable step above

	Reload postgres

	
fabfile.wait()

	A waiting task with a ETA indicator

This task waits api.env.log_duration seconds and tells you how much
time is left.

	
fabfile.is_installed(package)

	ubuntu/debian specific command to check if a package is currently
installed

	
fabfile.install(package)

	Install the package if not installed and returns whether it was
installed or already existed

	
fabfile.uninstall(package)

	Uninstall the package and purge the settings

WARNING: Since this purges the setting this should only be used if this command
was the command that installed the package

	
fabfile.analyse()

	Upload the query analyser, analyse the logs and download the report

	Create a temporary directory to do the parsing (default /tmp/postgres)

	Check if libqt4-sql is installed as this is a requirement to run the
app. if it’s not installed, it will be installed automatically.

	Upload the pg_query_analyser binary for the platform. automatically
uploads the version for this ubuntu version with this architecture (if
you don’t have the binary, use the build command)

	Run pg_query_analyser over the current logfile

	Copy the report to your local machine

	
fabfile.build()

	Build the application on the remote system and download to the local pc

	install git, libqt4-dev and qt4-qmake if needed

	git clone the pg_query_analyser repository

	run qmake and make in the cloned directory

	download the generated binary into
pg_query_analyser_<os_version>_<architecture>

	remove the packages from step 1 only if they were installed by this step

	remove the temporary directory which was created by the git clone

	
fabfile.log_and_analyse()

	Do a full log and analyse cycle

	enable_logging()

	wait()

	analyse()

	disable_logging()

	
fabfile.analyse

	Upload the query analyser, analyse the logs and download the report

	Create a temporary directory to do the parsing (default /tmp/postgres)

	Check if libqt4-sql is installed as this is a requirement to run the
app. if it’s not installed, it will be installed automatically.

	Upload the pg_query_analyser binary for the platform. automatically
uploads the version for this ubuntu version with this architecture (if
you don’t have the binary, use the build command)

	Run pg_query_analyser over the current logfile

	Copy the report to your local machine

	
fabfile.build

	Build the application on the remote system and download to the local pc

	install git, libqt4-dev and qt4-qmake if needed

	git clone the pg_query_analyser repository

	run qmake and make in the cloned directory

	download the generated binary into
pg_query_analyser_<os_version>_<architecture>

	remove the packages from step 1 only if they were installed by this step

	remove the temporary directory which was created by the git clone

	
fabfile.comment(file, line)

	Comment the given line in the given file using perl

This essentially does the same as the fabric
comment [http://docs.fabfile.org/en/latest/api/contrib/files.html#fabric.contrib.files.comment] method
but because of weird escaping issues I couldn’t get that one to work.

	
fabfile.disable_logging

	Disable logging on the Postgres server

	Comment the include for the config file from the
enable step above

	Reload postgres

	
fabfile.enable_logging

	Enables logging on the Postgres server

	Copy [http://docs.fabfile.org/en/latest/api/core/operations.html#fabric.operations.put] pg_query_analyser_log.conf to the
remote server

	Add `include pg_query_analyser_log.conf ` to the main postgres config file

	Reload postgres

Including the config file is done by
appending [http://docs.fabfile.org/en/latest/api/contrib/files.html#fabric.contrib.files.append] the include line to
the main Postgres config or by uncommenting the
line if already exists.

	
fabfile.get_env()

	Get the env with all variables parsed using Python string formatting

Example:

>>> from fabric import api
>>> api.env.foo = 'The value of Foo!'
>>> api.env.bar = 'The value of Bar and foo: %(foo)s'
>>> get_env().bar
'The value of Bar and foo: The value of Foo!'

The parser does ENV_PARSE_PASSES over the variables so nested variables
are supported.

It is also possible to add host-specific configuration overrides using
the ENV_OVERRIDES. Something like this will give you host specific
support:

>>> from fabric import api
>>> ENV_OVERRIDES['host'] = {'my_special_host': {'foo': 'Special Foo!'}}
>>> api.env.foo = 'The value of Foo!'
>>> api.env.bar = 'The value of Bar and foo: %(foo)s'
>>> api.env.host = 'my_special_host'
>>> get_env().bar
'The value of Bar and foo: Special Foo!'

	
fabfile.install(package)

	Install the package if not installed and returns whether it was
installed or already existed

	
fabfile.is_installed(package)

	ubuntu/debian specific command to check if a package is currently
installed

	
fabfile.log_and_analyse

	Do a full log and analyse cycle

	enable_logging()

	wait()

	analyse()

	disable_logging()

	
fabfile.uncomment(file, line)

	Uncomment the given line in the given file using perl

This essentially does the same as the fabric
uncomment [http://docs.fabfile.org/en/latest/api/contrib/files.html#fabric.contrib.files.uncomment] method
but because of weird escaping issues I couldn’t get that one to work.

	
fabfile.uninstall(package)

	Uninstall the package and purge the settings

WARNING: Since this purges the setting this should only be used if this command
was the command that installed the package

	
fabfile.wait

	A waiting task with a ETA indicator

This task waits api.env.log_duration seconds and tells you how much
time is left.

	
fabfile.wrap_environments()

	Wrap the command with these environment files

By using this context you can add overrides for specific hosts in external
files or just add global defaults.

To use the general overrides simply add your settings to one of the files
in ENVIRONMENT_FILES and/or add extra files to that file.
To use the host-specific configuration files the settings must be in one
of the files mentioned in AVAILABLE_ENVIRONMENT_FILES.

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 fabfile	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | U
 | W

A

 	
 	analyse (in module fabfile)

 	
 	analyse() (in module fabfile)

B

 	
 	build (in module fabfile)

 	
 	build() (in module fabfile)

C

 	
 	comment() (in module fabfile), [1]

D

 	
 	disable_logging (in module fabfile)

 	
 	disable_logging() (in module fabfile)

E

 	
 	enable_logging (in module fabfile)

 	
 	enable_logging() (in module fabfile)

F

 	
 	fabfile (module)

G

 	
 	get_env() (in module fabfile), [1]

I

 	
 	install() (in module fabfile), [1]

 	
 	is_installed() (in module fabfile), [1]

L

 	
 	log_and_analyse (in module fabfile)

 	
 	log_and_analyse() (in module fabfile)

U

 	
 	uncomment() (in module fabfile), [1]

 	
 	uninstall() (in module fabfile), [1]

W

 	
 	wait (in module fabfile)

 	
 	wait() (in module fabfile)

 	wrap_environments() (in module fabfile), [1]

 nav.xhtml

 Table of Contents

 		Welcome to Postgres Query Analyser's documentation!

 		pg_query_analyser – PostgreSQL Slow Query Log parser

 		Overview

 		Example output

 		Requirements

 		Install

 		Usage

 		Help

 		fabfile Module

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

